plc training

Robots | Artificial Intelligence | machine learning and cameras are becoming a must

Kuka relies on more flexibility in automation: why the demand for the combination of robot and camera systems is currently increasing so rapidly.

Cameras give robots eyes and make them flexible. They are also a solution to the shortage of skilled workers, higher quality and speed

Robotics and automation are finding their way into more and more areas in the industry, medium-sized companies and trade. At the same time, seeing robots, i.e. the use of camera technology on industrial robots, are experiencing increasing demand. Because cameras make robots flexible, that end customers the enormous variety of variants in their production.
“For us, it’s about robotics in medium-sized companies and flexible production – we face this challenge again and again and that’s why we also use sensors,” says Michael Suppa, Managing Director at Roboception. This topic falls under Industry 4.0 because there is a flexible product that has to be designed, in which the sensors play a major role and the processing of the corresponding information.
“We have the scenario of a large, constantly changing product portfolio and variants in production that have to be managed via the same system. Something like this is rather difficult with classic automation approaches. In addition, customers today are more and more interested in plug & produce solutions get,” explains Suppa.

Michael Suppa is the managing director and co-founder of the Munich company Roboception and an expert in innovative 3D perception solutions. As a pioneer in the field of 3D sensor technology, Roboception combines classic and AI-based methods so that robotic systems can capture their environment in real-time. They enable robots to see and make decisions, so to speak – central elements for future-oriented and flexible automation solutions

The robot’s camera technology recognizes 100 different variants

A practical example is provided by Kautenburger GmbH, which, in cooperation with Roboception and Kuka, is developing a solution for a Spanish customer to stack and depalletize a wide variety of kiln bricks on kiln cars and pallets. Software modules and sensors from Roboception and robots from Kuka are used, with stereo cameras being used, as this is no longer a problem in terms of computing power.
“There are up to 100 different types of oven bricks,” says managing director Christian Kautenburger, “and without camera technology, there are many false trips and collisions. With camera technology, there are no missed trips or collisions with a cycle time of nine seconds. The cycle time was previously 18 seconds. In addition, there were clearing times of half a shift in the event of any collisions.”
At first glance, the stack of stove bricks looks very orderly. “However, the transport route to the kiln and the shrinkage behaviour of the stones in the kiln makes the use of camera technology necessary, because the position of the stones for the robot cannot be defined precisely enough on its own,” says Kautenburger.

Christian Kautenburger is Managing Director of the Saarland Kautenburger GmbH . Together with Roboception, the medium-sized company has implemented an application for depalletizing furnace bricks. Software modules and sensors from Roboception were used for this. Further projects with applied AI solutions are being planned. 

Automation attractive even for the smallest companies

“The camera and robot system was very easy for us to commission. Of course, this simplicity also helps inexperienced users from medium-sized companies to think more about automation,” says Kautenburger. His customers are currently facing two challenges: cost pressure and a shortage of skilled workers.
” There is now also a shortage of skilled workers at the relocated locations abroad. Customers are considering bringing production back by automating it here. A customer in Romania actually has a complete line due to the shortage of skilled workers. The customer now wants us to do it as an automated solution. Here, too, we need a solution that sees,” emphasizes Kautenburger.
In addition, there is also the quality: It is not at all about saving personnel or costs but increasing the quality, which is too bad in manual work.
“I’ve noticed that even the smallest companies, for example in the machining or component deburring sectors, are thinking about using robots. 

Machine learning and 3D sensors make it easier to use

Nobody needs to be afraid of taking the step of using robotics. “Because machine learning and 3D sensor technology give us an important basis for realizing flexible production: we are replacing mechanical solutions or feeds with sensors and software, so to speak. Machine learning is a method for finding parameter sets from a large variation,” describes soup.
There is either a data-based or a model-based approach to how this parameter search is to be carried out. Suppa explains: “If I don’t have any model data, i.e. unknown objects, I have to resort to data-driven approaches, which means I record objects and train them from this data and then generate templates or reference models. In the context of industrial automation, where we usually always have CAD data, I can generate the reference models using a simulation. The advantage of the model-based approach is that the customer does not need any training time on site.”

Amortization of the costs for robotics and sensors

According to Kautenburger, the investment in automation usually has to pay for itself within a year. “That’s not possible here because it requires one robot for palletizing and one for depalletizing, which replaces six jobs and requires an amortization period of three to four years,” explains Kautenburger.
But in the refractory industry, there are very conservative investors, for whom an investment in the future is always valuable. In addition, the quality increased in terms of process reliability, since the robot works very carefully and the employee does not cause any damage to the stones such as broken edges.
“We have achieved a payback period of seven months for a customer who wants to improve quality,” Kautenburger calculates another example.

Keep the hurdle for the use of robotics low

Finally, Suppa reports which hurdles need to be cleared for potential users: “Due to the increasing number of variants, customers are willing to use sensors – on the premise that they don’t become too complex. Because the user doesn’t want to deal with the ‘The task of image processing. That’s the motto: Hide complexity and allow usability.”

PLC training courses in lahore by burraq engineering solutions

PLC – automated control for the industry

Programmable logic controllers monitor and regulate machines and manufacturing processes in industrial environments with automation technology. In the future, as autonomous systems, they could even optimize processes intelligently and independently. In our guide, we introduce you to the various systems and provide tips on selection and the right accessories.


  • What role does the programmable logic controller play in automation?
  • Advantages of SPS
  • How is a programmable logic controller structured?
  • Functions of programmable logic controllers
  • Compatibility and accessories for networking
  • The right equipment for your PLC
  • types of PLC
  • Modular PLC: A simple and individual solution for every machine system
  • Programming languages ​​for PLC

What role does the programmable logic controller play in automation?

A PLC is a digital electronic system that is equipped with programmable memory. The respective control instruction for the appropriate function can then be saved on this. Various types of machines and processes are then controlled via digital or analogue inputs and outputs.
Thanks to their great flexibility, PLCs are being used more and more frequently in many areas of industry and are replacing conventional connection-programmable controllers. Instead of hard-wired logic based on relay switches, where the control function can only be changed by laborious switching, these electronic components can be digitally programmed and take on complex control tasks in networked production processes of Industry 4.0.
Typical examples of the use of PLCs can be found in production plants, packaging machines, in the beverage and steel industries and also in the medical sector. But you also come across digital electrical controls in everyday life, for example in traffic light circuits, escalators, elevators, roller shutters and gate systems or even in heating systems.

Advantages of PLC

  • high flexibility and versatility
  • uncomplicated duplication and modification of the programming instead of cumbersome rewiring
  • simplified implementation of programming
  • less assembly effort
  • quick change of function
  • high reliability
  • low energy consumption
  • little need for space
  • Networking options with other devices and systems
  • Remote diagnosis and maintenance are possible

Programmable logic controllers only have a few disadvantages, which in individual cases speak for the use of conventional connection-programmable controllers: The costs for the components are comparatively high so the purchase of PLCs is not worthwhile for many small controllers. In addition, an appropriate technical infrastructure with digital devices and trained personnel are required for effective use. Acceptance and commissioning of systems can also be more complex since the program routines and programming have to be tested in addition to the machine components. Individual components such as safety circuits or device monitoring may become more complex.

How is a programmable logic controller structured?

The basic version of a PLC consists of a processor in the central module, signal inputs and outputs, an operating system and the interface.
The control is programmed via the application program on the computer or via a connected control panel. It is loaded onto the PLC via the interface and defines the switching of inputs and outputs. The actual operation then takes place independently of the computer and, thanks to its own PLC power supply, also autonomously.
Depending on the complexity, PLCs have a different number of analogue or digital inputs and outputs, which are linked to the machine or system via so-called sensors and actuators. At the inputs, for example, sensors such as pressure sensors, temperature or level sensors monitor the machine functions. The operating system evaluates the information collected, compares it with the parameters programmed by the user and sends the appropriate control signals to the outputs.
The actuators that control the functions are connected here. These can be contactors for switching on electric motors, electric valves for compressed air and hydraulics or drive control modules.

Functions of programmable logic controllers

PLCs can take on specific functions, such as:

  • link control,
  • Flow control,
  • as well as time, counting and arithmetic functions.

Cycle-oriented PLCs work strictly according to EVA, the basic principle of data processing with input, processing, output. The inputs are queried and control is passed to the user program. After transferring the control signals to the outputs, the process starts over.
Cyclic PLCs with interrupt processing report an alarm when the status of the connected sensor changes and then start an additional program loop adapted to the respective situation before continuing the main program.
Event-controlled PLCs process-specific pre-programmed tasks after a status change of the connected sensors.

Compatibility and accessories for networking

One of the biggest advantages of PLC is the cross-system networking with other devices and computers. Correct networking is not only important for new installations. Even PLCs based on older standards can be connected to modern devices during retrofitting using the appropriate PLC cables, plugs and adapters.
Most PLCs can be connected to a PC via a serial cable. Serial device servers are suitable for this, with which conventional serial components can be connected via LAN. Ethernet media converters connect different transmission media with each other in a compatible way. Common interfaces are RS-232 and RS-485 with DB-9 and DB-25 connectors.
However, PLC interfaces are not standardized, so depending on the device provider, other solutions are used in addition to standard serial cables, which you should find out about in advance or involve a specialist. In general, the design thus determines the requirements for the accessories for the respective PLC

The right equipment for your PLC

Your PLC gains in efficiency with the right additional equipment and can also be expanded with devices via the interface.

  • DIN rails: for optimal assembly.
  • Displays and monitors: for the direct display of operational data.
  • HMI touch panel: for multifunctional visualization, operation and diagnosis of machines and systems.
  • Smart gateway: Networking machines and systems intelligently in the IoT.

types of PLC

In terms of structure and functionality, a distinction is made between hard PLCs and soft PLCs as well as compact and slot PLCs.
Classic PLCs are hardware-based, hence their name Hard-PLC. They usually only include the most important control functions, but extensions for DIN rails and plug connections are quickly possible.
Soft PLCs take over the control in software form. They have their own operating system and often additional user software. However, they do not have their own CPU, but use the PC processor and have to share the processing power with the PC’s operating system and, if necessary, other applications. This can have an impact on the performance of the respective PLC when the load is high.
With a compact PLC, all components are housed together on a single circuit board in a single housing.
A slot PLC is used directly as a PCI plug-in card and for specific tasks such as storing production data. With these controllers, the PC replaces the PLC hardware. In contrast to a soft PLC, however, a slot PLC has a co-processor and its own operating system, with which it executes control tasks independently of the PC processor. Integrated connections enable access to decentralized actuators and sensors.

design typeHard PLCSoft PLCCompact PLCSlot PLC
notes• PLC hardware
solution • are started up quickly
• good real-time
behaviour • most important functions with expansion options
• PLC software solution
• more convenient to use
• slow start-up
• unstable at very high loads
• space-saving
• inexpensive
• suitable for small-scale tasks
• low space requirements
• they remain active thanks to their own power supply even if the PC fails
• simplified communication between PLC and PC thanks to visualization software

Modular PLC: A simple and individual solution for every machine system

Modular PLCs are not assemblies in the true sense but can be understood as a superordinate system. With modular controls, each individual functional component is housed in its own housing and on a separate control board. In this way, the PLC can be assembled individually using individual plug-in modules and easily expanded if required. An additional advantage is that in the event of a defect, only the respective assembly needs to be replaced and not the entire controller.


  • individual compilation of the required elements
  • Extension with the appropriate circuit board possible
  • for more complex regulation and control circuits

Some typical manufacturers and model series of modular PLCs


  • S7-300
  • S7-1200
  • S7-1500

Schneider Electric

⦁ M200s
⦁ M340
⦁ M580


⦁ CP1E
⦁ CP1H
⦁ CP1L

Allen Bradley

  • micro 820
  • micro 850
  • micro 870

Programming languages ​​for PLC

Various programming languages ​​can be found in the controls:

  • ST – Structured Text
  • FBD – function block language
  • LAD – Ladder Diagram
  • IL – Instruction List
  • SCL—Structured Control Language

FBD is popular with PLC beginners because it works with drag & drop and the behaviour of inputs and outputs is easy to understand. Sophisticated programming can be implemented with SCL. ST and IL are text-based, the other three graphical.

What can a PLC do?  Why do we use them?

  • The CPU regulates the program, data storage and data exchange with I / O modules.
  • Input and output modules are the means of exchanging data between field devices and CPUs. Indicates to the CPU the exact status of the field devices and also acts as a tool to control them.
  • A programming device is a computer loaded with programming software that allows a user to create, transfer, and make changes to HMI software.
  • Memory provides storage media for the HMI program as well as for different data.

The concept of PLC 

” PLC ” which means ” Programmable Logic Controller “, is clear. The word “programmable” differentiates it from the conventional logic of the relay. It can be easily programmed or changed according to the application requirement. The HMI also outweighed the risk of wiring change.

What can a PLC do? Why do we use them? (in the photo: SIEMENS Simatic S7-1500, credit: fully

The PLC as a unit consists of a processor to perform the control action on the field data provided by the input and output units. In a programming device, the PLC control logic is first developed and then transferred to the PLC.

So what can a PLC do?

  • It can perform retransmission switching tasks.
  • It can perform counting, calculation and comparison of analogue process values.
  • Provides flexibility to modify control logic, whenever needed, in the shortest amount of time.
  • Responds to changes in process parameters within fractions of a second.
  • Improves the reliability of the overall control system.
  • It is cost-effective to control complex systems.
  • It aims to pull simpler and faster
  • Can work with the help of HMI (Human-Machine Interface) compute.

The following is an example of ABB programmed AC500 logic controllers.

Basic component diagram

Figure 1 shows the basic diagram of a common PLC system.

Complete PLC diagram

As shown in the figure above, the heart of the “PLC” is in the centre, ie the heart of the Processor or CPU (central processing unit).

  • The CPU regulates the SCADA program, data storage and data exchange with I / O modules.
  • Input and output modules are the means of exchanging data between field devices and CPUs. Indicates to the CPU the exact status of the field devices and also acts as a tool to control them.
  • A programming device is a computer loaded with programming software that allows a user to create, transfer, and make changes to PLC software.
  • Memory provides storage media for the HMI program as well as for different data.

PLC system size

They are usually sorted by size:

  • A small system is one with less than 500 analogue and digital I / Os.
  • An intermediate system has I / Os ranging from 500 to 5,000.
  • A system with over 5,000 I / O is considered large.

Components of the PLC system

CPU or processor: The main processor (central processing unit or CPU) is a microprocessor-based system that runs the control program after reading the status of the field inputs and then sends commands to the field outputs.

I / O Section: The I / O modules act as the “Real Data Interface” between the field and the CPU. It knows the real status of the field devices and controls the field devices through the relevant input/output cards.

Programming device: A CPU card can be connected to a programming device via a communication link via a programming port on the CPU.

Operating station: A operating station is commonly used to provide an “operating window” to the process. It is usually a separate device (generally a PC), loaded with HMI (Human Machine Software).

PLC settings

There are two basic configurations that commercial manufacturers offer:

  1. Stable configuration
Stable PLC configuration

2. Modular configuration

Modular type PLC

Programmable logic controller (PLC)

PLC Programmable logic controller
PLC Programmable logic controller

Programmable logic controller
A programmable logic controller q ( PLC ), or programmable controller is a device that replaces the conventional automation table all auxiliary relays, time, the counters of an industrial computer digital q having become resistant and adapted for controlling production processes, such as production lines, or robotic devices, or any activity that requires high control reliability and ease of programming and fault diagnosis process.

First developed in the automotive industry to provide flexible, durable and easily programmable controllers to replace hard relay wiring and timers. They have since been widely adopted as highly reliable automation controllers, and are suitable for harsh environments. A PLC Programmable logic controller is an example of a “hard” system operating in real-time as the results must be generated in response to the system input conditions within a limited time, otherwise, there will be unintentional operation.
They can be designed for multiple digital and analogue I / O settings, extended temperature fluctuations, electrical noise immunity, and shock and vibration resistance. Programs to control the operation of the machine are usually stored in battery-backed-up or non-volatile memory.

To get Physical and Online Training in PLC by experts instructors of Automation Industry

The PLC was born in the US automotive industry. Before PLC, relays, sequins, cam timers, percussion timers, and closed-loop controllers were regulated for control, sequencing, and logic for the safe construction of cars. Of these they could number in the hundreds or even thousands, the process of updating these installations was very time consuming and costly, and they also needed electricians to connect each relay and change their functional characteristics.

When digital computers became available, general-purpose programmable devices were used to test sequential and combinational logic in industrial processes. However, these early computers required special programmers and strict environmental controls for temperature, cleanliness, and power quality. To meet these challenges, the PLC was developed with many key features. It would not tolerate the shop-floor environment, would support bit-format input and output in an easily scalable way, would not require years of training to use, and would allow the operation to be monitored. Since many industrial processes have schedules that can be easily addressed with response times in milliseconds, in modern (fast, small, reliable) electronics greatly facilitate the building of reliable controllers, and performance could be exchanged for their reliability.

Our New Initiative alhumdulillah. Hostel Facility for Trainees.
This is default text for notification bar

of escort çukurova escort kozan escort seyhan escort yüreğir escort adana mutlu son masaj besni escort kahta escort gölbaşı escort adıyaman mutlu son masaj bolvadin escort dinar escort sandıklı escort emirdağ escort afyon mutlu son masaj diyadin escort doğubayazıt escort patnos escort ağrı mutlu son masaj ortaköy escort aksaray mutlu son masaj merzifon escort suluova escort taşova escort amasya mutlu son masaj çankaya escort keçiören escort yenimahalle escort mamak escort etimesgut escort sincan escort altındağ escort pursaklar escort gölbaşı escort polatlı escort çubuk escort kahramankazan escort beypazari escort ankara mutlu son masaj alanya escort manavgat escort serik escort antalya mutlu son masaj şehitkamil escort nizip escort ıslahiye escort antep mutlu son masaj ardahan mutlu son masaj artvin mutlu son masaj hopa escort borçka escort aydın mutlu son masaj efeler escort nazilli escort kuşadası escort söke escort didim escort incirliova escort çine escort germencik escort balıkesir mutlu son masaj karesi escort altıeylül escort edremit escort bandırma escort gönen escort ayvalık escort burhaniye escort bigadiç escort susurluk escort bartın mutlu son masaj batman mutlu son masaj kozluk escort sason escort beşiri escort bayburt mutlu son masaj bilecik mutlu son masaj bozuyuk escort bingöl mutlu son masaj solhan escort genç escort karlıova escort bitlis mutlu son masaj tatvan escort güroaymak escort ahlat escort bolu mutlu son masaj gerede escort burdur mutlu son masaj bucak escort bursa mutlu son masaj osmangazi escort yıldırım escort nilüfer escort inegöl escort gemlik escort mudanya escort mustafakemalpaşa escort gürsu escort karacabey escort orhangazi escort kestel escort iznik escort çanakkale mutlu son masaj biga escort can escort gelibolu escort ayvacık escort çankırı mutlu son masaj çerkes escort çorum mutlu son masaj sungurlu escort osmancık escort alaca escort iskilip escort denizli mutlu son masaj pamukkale escort merkezefendi escort çivril escort acıpayam escort tavas escort diyarbakır mutlu son masaj kayapınar escort bağlar escort yenişehir escort ergani escort bismil escort sur escort silvan escort çermik escort dicle escort düzce mutlu son masaj akçakoca escort kaynaşlı escort edirne mutlu son masaj keşan escort uzunköprü escort ipsala escort elazığ mutlu son masaj kovancılar escort karakoçan escort erzincan mutlu son masaj erzurum mutlu son masaj yakutiye escort palandöken escort aziziye escort horasan escort oltu escort pasinler escort odunpazarı escort tepebaşı escort eskişehir mutlu son masaj bulancak escort espiye escort tirebolu escort görele escort giresun mutlu son masaj gümüşhane mutlu son masaj kelkit escort hakkari mutlu son masaj yüksekova escort şemdinli escort hatay mutlu son masaj antakya escort iskenderun escort defne escort dörtyol escort samandağ escort kırıkhan escort reyhanlı escort arsuz escort altınözü escort hassa escort payas escort erzin escort yayladağı escort ığdır mutlu son masaj yalvaç escort eğirdir escort sarkıkaraağaç escort ısparta mutlu son masaj istanbul mutlu son masaj izmir mutlu son masaj buca escort karabağlar escort bornova escort karşıyaka escort konak escort bayraklı escort çiğli escort torbalı escort menemen escort gaziemir escort ödemiş escort kemalpaşa escort bergama escort menderes escort aliağa escort tire escort